Lopez C Mathematics for Data Science Linear Algebra with MatLAB 2025

Lopez C Mathematics for Data Science Linear Algebra with MatLAB 2025 | 3.42 MB
Title: Mathematics for Data Science: Linear Algebra with Matlab
Author: César Pérez López
Description:
Rosnąca dostępność danych sprawiła, że data science i uczenie maszynowe są powszechnie używane do przeróżnych celów. Równocześnie wiele osób pomija analizy matematyczne przed rozpoczęciem przetwarzania danych. A to wiąże się z ryzykiem popełnienia istotnych błędów już na etapie projektowania danego systemu. Dopiero dogłębne zrozumienie niektórych koncepcji matematycznych i umiejętność ich praktycznego zastosowania sprawia, że kandydat na analityka danych ma szansę osiągnąć poziom profesjonalisty.
To książka przeznaczona dla osób, które chcą dobrze zrozumieć matematyczne podstawy nauki o danych i nauczyć się stosowania niektórych koncepcji w praktyce. Wyjaśniono tu takie zagadnienia jak rachunek różniczkowy i całkowy, rachunek prawdopodobieństwa, algebra liniowa i statystyka, pokazano także, w jaki sposób posługiwać się nimi w regresji liniowej, regresji logistycznej i w tworzeniu sieci neuronowych. Poszczególne tematy zostały omówione zrozumiale, przystępnie, bez naukowego żargonu, za to z licznymi praktycznymi przykładami, co dodatkowo ułatwia przyswojenie koncepcji i prawideł matematyki. Opanowanie zawartej tu wiedzy pozwala uniknąć wielu kosztownych błędów projektowych i trafniej wybierać optymalne rozwiązania!
Dzięki książce nauczysz się:
używać kodu Pythona i jego bibliotek do eksplorowania koncepcji matematycznych
posługiwać się regresją liniową i regresją logistyczną
opisywać dane metodami statystycznymi i testować hipotezy
manipulować wektorami i macierzami
łączyć wiedzę matematyczną z użyciem modeli regresji
unikać typowych błędów w stosowaniu matematyki w data science
Zrozum matematykę i efektywnie używaj danych!
DOWNLOAD:
https://rapidgator.net/file/72a363baf0f5e2b350da9727883be37d/Lopez_C._Mathematics_for_Data_Science._Linear_Algebra_with_MatLAB_2025.rar
https://ddownload.com/6fkjxjabct5a/Lopez_C._Mathematics_for_Data_Science._Linear_Algebra_with_MatLAB_2025.rar
Rosnąca dostępność danych sprawiła, że data science i uczenie maszynowe są powszechnie używane do przeróżnych celów. Równocześnie wiele osób pomija analizy matematyczne przed rozpoczęciem przetwarzania danych. A to wiąże się z ryzykiem popełnienia istotnych błędów już na etapie projektowania danego systemu. Dopiero dogłębne zrozumienie niektórych koncepcji matematycznych i umiejętność ich praktycznego zastosowania sprawia, że kandydat na analityka danych ma szansę osiągnąć poziom profesjonalisty.
To książka przeznaczona dla osób, które chcą dobrze zrozumieć matematyczne podstawy nauki o danych i nauczyć się stosowania niektórych koncepcji w praktyce. Wyjaśniono tu takie zagadnienia jak rachunek różniczkowy i całkowy, rachunek prawdopodobieństwa, algebra liniowa i statystyka, pokazano także, w jaki sposób posługiwać się nimi w regresji liniowej, regresji logistycznej i w tworzeniu sieci neuronowych. Poszczególne tematy zostały omówione zrozumiale, przystępnie, bez naukowego żargonu, za to z licznymi praktycznymi przykładami, co dodatkowo ułatwia przyswojenie koncepcji i prawideł matematyki. Opanowanie zawartej tu wiedzy pozwala uniknąć wielu kosztownych błędów projektowych i trafniej wybierać optymalne rozwiązania!
Dzięki książce nauczysz się:
używać kodu Pythona i jego bibliotek do eksplorowania koncepcji matematycznych
posługiwać się regresją liniową i regresją logistyczną
opisywać dane metodami statystycznymi i testować hipotezy
manipulować wektorami i macierzami
łączyć wiedzę matematyczną z użyciem modeli regresji
unikać typowych błędów w stosowaniu matematyki w data science
Zrozum matematykę i efektywnie używaj danych!
DOWNLOAD:
https://rapidgator.net/file/72a363baf0f5e2b350da9727883be37d/Lopez_C._Mathematics_for_Data_Science._Linear_Algebra_with_MatLAB_2025.rar
https://ddownload.com/6fkjxjabct5a/Lopez_C._Mathematics_for_Data_Science._Linear_Algebra_with_MatLAB_2025.rar

Information
Users of Guests are not allowed to comment this publication.